King Abdulaziz University- Faculty of Science
Physics Department- Electricity \& Magnetism (Phys 202)

Encircle the correct answers for the following problems.

1. The electric field at 5 cm from a point charge is $36 \mathrm{kN} / \mathrm{C}$. The electric potential at 2 cm from the charge is:
(a) 4.5 kV
(b) 3 kV
(c) 2.25 kV
(d) 1.5 kV
(e) zero
2. The electric potential at the surface of a solid sphere of radius 4 cm and charge 16 nC is:
(a) 3.6 kV
(b) 4.8 kV
(c) 7.2 kV
(d) 14.4 kV
(e) zero
3. The electric potential at the center of a conducting sphere of radius 5 cm is 360 V . The magnitude of the electric field at the center of the sphere is:
(a) $7200 \mathrm{~N} / \mathrm{C}$
(b) $72 \mathrm{~N} / \mathrm{C}$
(c) $18 \mathrm{~N} / \mathrm{C}$
(d) $1800 \mathrm{~N} / \mathrm{C}$
(e) zero
4. In Fig. 1, the work needed to bring a charge of 3 mC from infinity $\left(\mathrm{V}_{\infty}=0\right)$ to point A is:
(a) 24 J
(b) 18 J
(c) 36 J
(d) 30 J
(e) 42 J
5. A parallel-plate capacitor, of plate area $2 \mathrm{~m}^{2}$, has a charge of 5 nC when it is connected to a potential difference of 10 V . The separation between the capacitor's plates is:
(a) 2.95 cm
(b) 3.54 cm
(c) 2.21 cm
(d) 8.85 cm
(e) 1 cm
6. An isolated sphere of radius 4 cm is connected to a potential difference of 12 V . The energy stored in the sphere is:
(a) $2 \times 10^{-11} \mathrm{~J}$
(b) $8 \times 10^{-11} \mathrm{~J}$
(c) $3.2 \times 10^{-10} \mathrm{~J}$
(d) $1.8 \times 10^{-10} \mathrm{~J}$
(e) zero
7. A parallel-plate capacitor is fully charged to $16 \mu \mathrm{C}$ when connected to an 8 V battery. If the battery is removed and a dielectric $(\kappa=2.0)$ is inserted in entire space, the potential difference across the plates will be:
(a) 3.2 V
(b) 1 V
(c) 4 V
(d) 1.6 V
(e) 2 V
8. In Fig.2, the charge on the capacitor $\mathbf{C}_{\mathbf{1}}$ is:
(a) $48 \mu \mathrm{C}$
(b) $64 \mu \mathrm{C}$
(c) 8 V
(d) $16 \mu \mathrm{C}$
(e) 16 V
9. A current of 0.5 A passes through a cylindrical wire of radius 0.5 mm and length 3 m if a voltage of 3.25 V is applied. The resistivity of the wire (in SI units) is:
(a) 1.7×10^{-6}
(b) 8.5×10^{-7}
(c) 3.4×10^{-6}
(d) 1.3×10^{-7}
(e) zero
10. In Fig. 3, the current passing through the resistor $\mathbf{R}_{\mathbf{1}}$ is:
(a) 12 V
(b) 30 V
(c) 10 V
(d) 2 A
(e) 1 A
11. The power dissipation rate through a 16Ω-resistor is 4.0 W . The voltage across the resistor is:
(a) 18 V
(b) 4 V
(c) 12 V
(d) 11 V
(e) 8 V
12. In RC circuit, the current passing through the circuit during charging process is:
(a) increasing
(b) constant
(c) decreasing
(d) oscillating
(e) zero
13. An uncharged $10 \mu \mathrm{~F}$ capacitor is connected to a battery and a resistor R . If it takes 4 s to reach half its maximum current, the value of R is:
(a) $577 \mathrm{k} \Omega$
(b) $721 \mathrm{k} \Omega$
(c) $1.4 \mathrm{M} \Omega$
(d) $289 \mathrm{k} \Omega$
(e) 14Ω
14. The internal resistance of an ideal battery is always:
(a) greater than zero
(b) 1Ω
(c) smaller than zero
(d) voltage dependent
(e) zero
15. According to Kirchhoff's roles, the correct statement is:
(a) For any closed loop, the summation of currents is always zero.
(b) For any junction point, the summation of currents leaving and entering is always greater than zero.
(c) For any closed loop, the summation of potentials is always less than zero.
(d) For any junction point, the summation of currents leaving and entering is zero.

Physical quantity	Value	Physical quantity	Value
Charge of electron	$\|\mathrm{e}\|=1.6 \times 10^{-19} \mathrm{C}$	Charge of proton	$\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$
Mass of electron	$\mathrm{m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}$	Mass of proton	$\mathrm{m}_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}$
Coulomb's constant	$\mathrm{k}=9 \times 10^{9} \mathrm{~N}^{2} \mathrm{~m}^{2} / \mathrm{C}^{2}$	Permittivity constant	$\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} /\left(\mathrm{N} \cdot \mathrm{m}^{2}\right)$

English Word	Arabic meaning	English Word	Arabic meaning	English Word	Arabic meaning
Conducting	موصل	Dissipation	التبديد (الهدر)	Separation	مسافة
Dielectric	عازل	Ideal	مثالي	Solid	مصمت

Exam II summar 2011
(1) $E=\frac{k q}{r^{2}} \Rightarrow q=\frac{E r^{2}}{k}=\frac{36 \times 10^{3} \times(0.05)^{2}}{9 \times 10^{9}}=10 \mathrm{nc}$

Then

$$
V=\frac{k q}{r}=\frac{9 \times 10^{9} \times 10 \times 10^{-9}}{0.02}=4.5 \mathrm{kV}
$$

(2) $\quad V=\frac{k q}{r}=\frac{9 \times 10 \times 16 \times 10^{9}}{0.04}=3.6 \mathrm{kV}$
 $E=0$ b゙bly
(4)

$$
\begin{aligned}
& V=\frac{k Q_{1}}{r_{1}}+\frac{k Q_{2}}{r_{2}}=k\left(\frac{Q_{1}}{r_{1}}+\frac{Q_{2}}{r_{2}}\right)=9 \times 10^{9}\left(\frac{-5 \times 10^{-8}}{3}+\frac{2 \times 10^{8}}{2}\right) \\
& V=-6 W
\end{aligned}
$$

$$
W=-9 V=-3 \times 10^{-3} \times\left(-\overline{6} \times 10^{3}\right)=18 \mathrm{~J}
$$

(5)

$$
\begin{aligned}
& C=\frac{Q}{V}=\frac{5 \times 10^{-9}}{10}=5 \times 10^{-10} \mathrm{~F} \\
& c=\frac{A C_{0}}{d} \Rightarrow d=\frac{A G_{0}}{C}=\frac{2 \times 8.85 \times 10^{-12}}{5 \times 10^{-10}}=3.54 \mathrm{~cm}
\end{aligned}
$$

(6)

$$
\begin{aligned}
& C=4 \pi \in R=4 \pi \times 8.85 \times 10^{-12} \times 0.04=4.45 \mathrm{PF} \\
& U=\frac{1}{2} C V^{2}=\frac{1}{2} \times 4.45 \times 10^{-12} \times(12)^{2}=3.2 \times 10^{-10} \mathrm{~J}
\end{aligned}
$$

(7)

$$
\begin{aligned}
& C=\frac{Q}{V}=\frac{16 \times 10^{-6}}{8}=2 \times 10^{-C} \mathrm{~F} \\
& C^{\prime}=K C=2 \times 2 \times 10^{-6}=4 \times 10^{6} \mathrm{~F}
\end{aligned}
$$

Hence

$$
V^{\prime}=\frac{Q}{C^{\prime}}=\frac{16 \times 10^{-6}}{4 \times 10^{-6}}=4 \mathrm{~V}
$$

(8)
ér.لll

$$
\begin{aligned}
& C_{\text {q }}=\frac{\left(c_{1}+c_{2}\right) \cdot C_{3}}{\left(c_{1}+C_{2}\right)+C_{3}}=4 \mu \mathrm{~F} \\
& Q_{\text {tot }}=C_{9} V=4 \times 10^{-6} \times 16=64 \times 10^{-6} C
\end{aligned}
$$

$$
V_{12}=\frac{Q_{10 t}}{C_{12}}=\frac{64 \times 10^{-6}}{8 \times 10^{6}}=8 \mathrm{~V}
$$

$$
Q=C_{1} V_{1}=2 \times 10^{-\overline{6}} \times 8=k \mu C
$$

(9)

$$
\begin{aligned}
& P=\frac{V}{I}=\frac{3.25}{0.8}=6.5 \Omega \\
& \rho=\frac{R A}{L}=\frac{6.5 \times \times\left(0.5 \times 10^{-3}\right)^{2}}{3}=1.7 \times 10^{-6} \Omega . \mathrm{m}
\end{aligned}
$$

(10)

$$
R_{9}=\frac{R_{1}\left(R_{2}+R_{3}\right)}{R_{1}+\left(R_{2}+R_{3}\right)}+R_{4}+R_{4}=\frac{10(10)}{20}+4+6=15 \Omega
$$

$$
\begin{aligned}
& V=i=\frac{V}{R}=\frac{30}{15}=2 A \\
& V=i R_{123}=i\left(\frac{R_{1}\left(R_{2}+R_{3}\right)}{R_{1}+\left(R_{2}+\frac{R}{3}\right)}\right)=2 \times\left(\frac{10 \times 10}{10+10}\right)=10 \mathrm{~V}
\end{aligned}
$$

$$
i=\frac{V_{123}}{R}=\frac{10}{10}=1 \mathrm{~A}
$$

(11) $P=\frac{V^{2}}{R} \Rightarrow V=\sqrt{R P}=\sqrt{16 \times 4}=8 V$
(12)
 decreasing vistul $\overrightarrow{1} \hat{F}^{2}$ charging
(13)

$$
\left.\begin{array}{rl}
I= & I e^{-t / R c} \\
& \Downarrow \\
\frac{I}{I_{0}} & =e^{-t / R c} \Rightarrow \ln \left(\frac{I}{I_{6}}\right)=-\frac{1}{2} I / R c \\
R= & \left.\frac{-t}{c \ln (I / I}\right)
\end{array}=-\frac{4}{10 \times 10_{0} I_{0} \ln \left(\frac{1}{2} \frac{1}{2} I_{0}\right.}\right)=577 \mathrm{k} \Omega .
$$

