

KING ABDULAZIZ UNIVERSITY- FACULTY OF SCIENCE

PHYSICS DEPARTMENT- ELECTRICITY & MAGNETISM (PHYS 202)

EXAM II SUMMER TERM 2011

TIME: 90 MINS

A

Student Name: Student Number: Section:

Encircle the correct answers for the following problems.

1. The electric fiel	d at 5 cm from a point cha	arge is 36 kN/C. The electr	ic potential at 2 cm from t	he charge is:
(a) 4.5 kV	(b) 3 kV	(c) 2.25 kV	(d) 1.5 kV	(e) zero
2. The electric pot	ential at the surface of a s	olid sphere of radius 4 cm	and charge 16 nC is:	
(a) 3.6 kV	(b) 4.8 kV	(c) 7.2 kV	(d) 14.4 kV	(e) zero
3. The electric potential electric field at the	tential at the center of a decenter of the sphere is:	conducting sphere of radi	us 5 cm is 360 V. The ma	gnitude of the
(a) 7200 N/C	(b) 72 N/C	(c) 18 N/C	(d) 1800 N/C	(e) zero
4. In Fig. 1 , the wo	ork needed to bring a char	ge of 3 mC from infinity (V	V_{∞} =0) to point A is:	
(a) 24 J	(b) 18 J	(c) 36 J	(d) 30 J	(e) 42 J
5. A parallel-plate difference of 10 V.	e capacitor, of plate area The separation between t	2 m ² , has a charge of 5 the capacitor's plates is:	nC when it is connected	to a potential
(a) 2.95 cm	(b) 3.54 cm	(c) 2.21 cm	(d) 8.85 cm	(e) 1 cm
6. An isolated sph sphere is:	ere of radius 4 cm is con	nected to a potential diffe	rence of 12 V. The energy	y stored in the
(a) 2×10 ⁻¹¹ J	(b) 8×10 ⁻¹¹ J	(c) 3.2×10 ⁻¹⁰ J	(d) 1.8×10 ⁻¹⁰ J	(e) zero
7. A parallel-plate removed and a die	e capacitor is fully charge electric (κ=2.0) is inserted	ed to 16 μC when connec in entire space, the potent	tted to an 8 V battery. If tial difference across the p	the battery is blates will be:
(a) 3.2 V	(b) 1 V	(c) 4 V	(d) 1.6 V	(e) 2 V
8. In Fig.2, the cha	rge on the capacitor C_1 is:			
(a) 48 μC	(b) 64 μC	(c) 8 V	(d) 16 μC	(e) 16 V
9. A current of 0.5 applied. The resist	A passes through a cylind ivity of the wire (in SI uni	lrical wire of radius 0.5 m ts) is:	m and length 3 m if a volta	age of 3.25 V is
(a) 1.7×10 ⁻⁶	(b) 8.5×10 ⁻⁷	(c) 3.4×10 ⁻⁶	(d) 1.3×10 ⁻⁷	(e) zero

10. In Fig. 3 , the current passing through the resistor R_1 is:						
(a) 12 V	(b) 30 V	(c) 10 V	(d) 2 A	(e) 1 A		
11. The power dissipati	on rate through a 16 Ω -re	esistor is 4.0 W. The volta	ge across the resistor is:			
(a) 18 V	(b) 4 V	(c) 12 V	(d) 11 V	(e) 8 V		
12. In RC circuit, the cur	rrent passing through the	circuit during charging p	rocess is:			
(a) increasing	(b) constant	(c) decreasing	(d) oscillating	(e) zero		
13. An uncharged 10 μ maximum current, the v	F capacitor is connected value of R is:	to a battery and a resist	or R. If it takes 4 s to rea	ch half its		
(a) 577 kΩ	(b) 721 kΩ	(c) 1.4 MΩ	(d) 289 kΩ	(e) 14 Ω		
14. The internal resista	nce of an ideal battery is a	ılways:				
(a) greater than zero	(b) 1 Ω	(c) smaller than zero	(d) voltage dependent	(e) zero		
15. According to Kirchhoff's roles, the correct statement is:						
(a) For any closed loop,	the summation of current	ts is always zero.				
(b) For any junction point, the summation of currents leaving and entering is always greater than zero.						
(c) For any closed loop, the summation of potentials is always less than zero.						
(d) For any junction point, the summation of currents leaving and entering is zero.						
$Q_2 = -5 \ \mu C$ $Q_1 = 2 \ \mu C$ $Q_2 = -5 \ \mu C$ $Q_1 = 2 \ \mu C$	$C_1 = 2 \mu F$ $C_2 = 6 \mu F$ $V = 10$	G V Fig. 2	$R_{1} = 10 \Omega$ $R_{2} = 8 \Omega R_{3} = 2 \Omega$ $R_{5} = 6 \Omega$ $V_{0} = 30 V$ Fig. 3	$R_4 = 4 \Omega$		

Physical quantity	Value	Physical quantity	Value
Charge of electron	e = 1.6×10 ⁻¹⁹ C	Charge of proton	e= 1.6×10 ⁻¹⁹ C
Mass of electron	$m_e=9.11 \times 10^{-31} kg$	Mass of proton	$m_p = 1.67 \times 10^{-27} \text{ kg}$
Coulomb's constant	$k=9 \times 10^{9} N.m^{2}/C^{2}$	Permittivity constant	$\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/(\text{N.m}^2)$

English Word	Arabic meaning	English Word	Arabic meaning	English Word	Arabic meaning
Conducting	موصل	Dissipation	التبديد (المهدر)	Separation	مسافة
Dielectric	عازل	Ideal	مثالي	Solid	مصمت

$$= \frac{1}{2} \frac$$

(2) منها حتى الملت ، كوم اليام احقى ما عَلَى ع الداية مج يسر الشاخص ووندهم charging t 3 I= Ie tre عد به تؤن دعم I=1 I $\frac{\mathbf{x}}{\mathbf{x}} = \frac{\mathbf{e}^{\frac{1}{2}}}{\mathbf{k}} \Rightarrow \int u\left(\frac{\mathbf{x}}{\mathbf{x}}\right) = -\frac{1}{2} \mathbf{k} \mathbf{c}$ $R = -\frac{t}{c \ln(\frac{1}{2})} = \frac{4}{\log \log \ln(\frac{1}{2})} = \frac{577 \text{ kg}}{10 \times \log \ln(\frac{1}{2})}$ لذي يطام به مثاليه المعلمة حَان المطَومة الدخلية له مسَادي حمد (4) يت خافة كريشون على أن تحدم البيارات الداخلة مساوى مجرع البيارات الخارجة (1) حديثار تحد المصلة عن المعظمة مسادى حفاً .